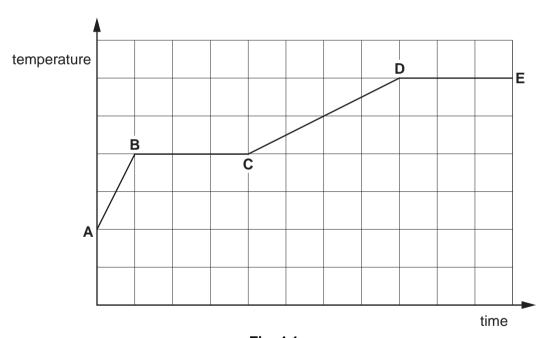
	(a)	with	as molecule of mass m travelling perpendicular to the wall of a container filts the wall is speed v . Explain why the molecule rebounds with speed v and undergoes a change of mentum of $2mv$.
Ġ		In y	our answer you should use appropriate technical terms spelled correctly.
		•••••	[2]
	(b)	gas	constant mass of gas occupies a container of constant volume. Use the kinetic theory of ses to explain the increase in the force exerted on the walls of the container by the gas en its temperature is raised.
			[3]
	(c)	(i)	The pressure of the air in the tyres of a car before a journey is 2.2×10^5 Pa at $18 ^{\circ}$ C. After travelling some distance, the temperature of the air in the tyres rises to $54 ^{\circ}$ C. Calculate the new pressure of the air. Assume the volume of air in the tyre stays constant.
			pressure = Pa [2]

ss of the car in (i) stays constant at 1200kg, calculate the contact of the tyres with the road as a result of the rise in	(ii)
change in area = m ² [3]	
[Total: 10]	

2	(a)	(i)	State, in words, Boyle's law.
			[2
		(ii)	Fig. 6.1 is a graph showing the relationship between the quantities involved in Boyle's law. Label the axes appropriately.
			Fig. 6.1
	(b)	A g 1.2	as cylinder of internal volume $0.050\mathrm{m}^3$ contains compressed air at 21 °C and pressure \times 10 ⁷ Pa. The molar mass of air is $0.029\mathrm{kgmol}^{-1}$.
		(i)	Calculate
			1 the number of moles of air in the cylinder
			number of moles =
			2 the mass of air in the cylinder.
			mass =kg


(ii)	An additional $1.5\mathrm{m}^3$ of air at $21^\circ\mathrm{C}$ and at atmospheric pressure, $1.0\times10^5\mathrm{Pa}$, is pumped into the cylinder. Calculate the new pressure of air in the cylinder, assuming no change in temperature during the process.
	pressure = Pa [4]
	[Total: 10]

3 (a) (i) Define specific heat capacity.

(ii)

												[1]
Describe the vaporisation.	difference	between	the	latent	heat	of	fusion	and	the	latent	heat	Oi
		• • • • • • • • • • • • • • • • • • • •								•••••		• • • •

(b) The graph in Fig. 4.1 shows the variation of temperature with time for a fixed mass of substance when heated by a constant power source. At **A** the substance is a solid; at **E** the substance is a vapour.

(i)	Describe the changes taking place in the kinetic energy and potential energy of the molecules for the following sections:
	A to B
	B to C
	[2]
	<u></u>
(ii)	State and explain what you can conclude from Fig. 4.1 about the specific heat capacity of the substance in the solid state compared with the specific heat capacity of the substance in the liquid state.
	[2]

(c)) The electric heating element of a bathroom shower has a power rating of 5.0 kW. An attempt is made to test the accuracy of this value by measuring the rate of flow of the water and the temperature of the water before and after passing the element.					
	The	e results of the test and other required data are as follows:				
		temperature of water supply to the shower = 17.4° C temperature of water after being heated by the element = 36.7° C rate of flow of water = $3.60\times 10^{-3}\mathrm{m^3min^{-1}}$ density of water = $1000\mathrm{kgm^{-3}}$ specific heat capacity of water = $4200\mathrm{Jkg^{-1}K^{-1}}$				
	(i)	Show that the power of the heating element is approximately 5 kW.				
		[4]				
	(ii)	State and explain a possible source of uncertainty that might affect the reliability of the test.				
		[2]				
		[Total: 12]				

🔊 Ir	rownian motion. n your answer, you should use appropriate technical terms, spelled correctly.
	r your answer, you should use appropriate teerinical terms, spence correctly.
	ig. 5.1 shows a gas contained in a cylinder enclosed by a piston. The volume of the gasiside the cylinder is 120 cm ³ . The pressure inside the cylinder is 350 kPa.
	piston pressure gauge
	gas
	Fig. 5.1
(i	
	[
(ii	The piston in Fig. 5.1 is moved quickly so that the gas occupies a volume of 55 cm ³ . Use Boyle's law to calculate the new pressure of the gas.
	pressure =kPa [
(iii	
`	increase in the temperature of the gas. Explain this increase in temperature in terms the movement of the piston and the motion of the gas molecules.

5	(a)	A	In your answer you should use appropriate technical terms spelled correctly.
		Stat	e the terms used to describe the thermal energy required to change
		(i)	a solid into a liquid at a constant temperature
			[1]
		(ii)	a liquid into a gas at a constant temperature.
			[1]
	(b)		st households waste energy by overfilling electric kettles. Assume that, on average, 0.80 kg rater per household per day is unnecessarily boiled.
		(i)	Estimate the energy required when $0.80\mathrm{kg}$ of water, initially at $18^\circ\mathrm{C}$, is heated in an electric kettle. The kettle switches off automatically when the water is boiling steadily at $100^\circ\mathrm{C}$. The specific heat capacity of water is $4200\mathrm{Jkg^{-1}K^{-1}}$.
			heat energy =
		(ii)	State and explain two different reasons why the actual quantity of energy required to warm the water to 100 °C is greater than the estimate in (i) .
			1
			2
			[2]
		(iii)	Calculate, in kWh, the average annual energy wasted per household by boiling too much water.

[Total: 8]

energy =kWh [2]